Ейнштейн помилявся: результати нового експерименту в квантовій механіці

Ейнштейн помилявся: результати нового експерименту в квантовій механіці

Альберт Ейнштейн не був повністю переконаний у правильності квантової механіки, вважаючи, що наша інтерпретація цієї теорії є неповною. Зокрема, він висловлював сумніви щодо концепції заплутаності, яка передбачає можливість впливу однієї частинки на іншу, навіть якщо вони не знаходяться поруч.

Експерименти з того часу показали , що квантова заплутаність дійсно можлива і що дві заплутані частинки можуть бути з’єднані на відстані. Тепер новий експеримент ще більше підтверджує це, і в такий спосіб, якого ми раніше не бачили.

У новому експерименті вчені використовували трубку довжиною 30 метрів, охолоджену до абсолютного нуля, щоб провести тест Белла : випадкове вимірювання двох заплутаних кубітів (квантових бітів) одночасно.

Тест пропонує математичну нерівність, яка, якщо її порушити, показує, що теорія квантової механіки тримається.

У цьому експерименті тест Белла не тільки виконується на більших відстанях, ніж намагалися раніше, але також виконується з використанням надпровідних схем, які, як очікується, відіграватимуть значну роль у розробці квантових комп’ютерів .

Читайте також:  Своє тіло можна продати для науки: 9 способів

Через структуру експерименту із сотнями електронних схем мікрометрового розміру модифіковану версію можна використовувати кількома способами.

«Завдяки нашому підходу ми можемо набагато ефективніше, ніж це можливо в інших експериментальних установках, довести, що нерівність Белла порушується», — каже квантовий фізик Саймон Шторц з ETH Zurich у Швейцарії.

«Це робить його особливо цікавим для практичного застосування».

Ці практичні програми можуть включати, наприклад, безпечні зашифровані комунікації.

Дзвінковий тест
Тут тестовий експеримент Белла включає заплутані кубіти. (Storz та ін., Nature , 2023)

Попри труднощі конструювання та тонкого налаштування машини, дослідники впевнені, що її також можна адаптувати для роботи у великих масштабах, розсуваючи межі того, що ми знаємо про квантову механіку.

«У нашій машині 1,3 [тонни] міді та 14 000 гвинтів, а також величезна кількість фізичних знань та інженерних ноу-хау», — каже квантовий фізик Андреас Валрафф, також з ETH Zurich.

Щоб усунути всі потенційні лазівки в тесті Белла, необхідно провести вимірювання за менший час, ніж потрібно для проходження світла з одного кінця в інший, що доводить відсутність обміну інформацією між ними.

Читайте також:  Археологи знайшли в Ісландії кам'яну фігурку невідомої тварини часів вікінгів

З такою установкою світлу потрібно було 110 наносекунд, щоб подолати трубу, а вимірювання проводилися всього на кілька наносекунд менше. Дослідники використовували мікрохвильові фотони, щоб створити заплутаність, і було оцінено більше мільйона вимірювань, щоб показати порушення нерівності Белла.

Це найдовша відстань між двома переплутаними надпровідними кубітами, яка демонструє перспективність технології кубітів. Ця ж технологія, продемонстрована тут, з часом може знайти свій шлях до повномасштабних квантових комп’ютерів.

«Наша робота демонструє, що нелокальність є життєздатним новим ресурсом у квантових інформаційних технологіях, реалізованим за допомогою надпровідних ланцюгів з потенційним застосуванням у квантовому зв’язку, квантових обчисленнях і фундаментальній фізиці», — пишуть дослідники в опублікованій статті.